1. 登录 | 注册 | 用户中心 | 关于平台 | 中国科学院
当前位置:成果展示 > 成果详情

Quantum Percolation and Magnetic Nanodroplet States in Electronically Phase-Separated Manganite Nanowires

  • [设施]:稳态强磁场
  • [期刊/会议名称]:Nano Letters
  • [摘要]:One-dimensional (1D) confinement has been revealed to effectively tune the properties of materials in homogeneous states. The 1D physics can be further enriched by electronic inhomogeneity, which unfortunately remains largely unknown. Here we demonstrate the ultrahigh sensitivity to magnetic fluctuations and the tunability of phase stability in the electronic transport properties of self-assembled electronically phase-separated manganite nanowires with extreme aspect ratio. The onset of magnetic nanodroplet state, a precursor to the ferromagnetic metallic state, is unambiguously revealed, which is attributed to the small lateral size of the nanowires that is comparable to the droplet size. Moreover, the quasi-1D anisotropy stabilizes thin insulating domains to form intrinsic tunneling junctions in the low temperature range, which is robust even under magnetic field up to 14 T and thus essentially modifies the classic 1D percolation picture to stabilize a novel quantum percolation state. A new phase diagram is therefore established for the manganite system under quasi-1D confinement for the first time. Our findings offer new insight into understanding and manipulating the colorful properties of the electronically phase-separated systems via dimensionality engineering.
  • [发表日期]:2017
  • [第一作者]:Kaixuan Zhang
  • [第一作者单位]: Hefei National Laboratory for Physical Sciences at the Microscale (HFNL
  • [通讯作者]:Changgan Zeng
  • [通讯作者单位]: International Center for Quantum Design of Functional Materials, HFNL, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • [论文类型]:0
  • [期刊分类]:SCI1区
  • [学科分类]:物理
  • [影响因子]:
  • [关键词]:Electronic phase separation; magnetic nanodroplets; manganite nanowire; quantum percolation; tunneling
  • [卷号]:17
  • [期号]:
  • [起止页码]:1461-1466
  • [简介]: